Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mater Today Adv ; 14: 100228, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1730007

ABSTRACT

The application of antiviral coatings to masks and respirators is a potential mitigating step toward reducing viral transmission during the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The use of appropriate masks, social distancing, and vaccines is the immediate solution for limiting the viral spread and protecting people from this virus. N95 respirator masks are effective in filtering the virus particles, but they cannot kill or deactivate the virus. We report a possible approach to deactivating SARS-CoV-2 by applying an antimicrobial coating (Goldshield 75) to masks and respirators, rendering them suitable for repeated use. Masks coated with Goldshield 75 demonstrated continuous inactivation of the Alpha and Beta variants of the SARS-CoV-2 over a 3-day period and no loss of inactivation when stored at temperatures at 50 °C.

2.
Pathog Glob Health ; 116(3): 137-139, 2022 05.
Article in English | MEDLINE | ID: covidwho-1585285

ABSTRACT

The circulation of SARS-CoV-2 Beta (B.1.351) variants challenged the control of COVID-19 pandemic. The numbers of COVID-19 cases and deaths and SARS-CoV-2 sequences in South Africa were collected. We reconstructed the variant-specified reproduction numbers (R t) and delay-adjusted case fatality ratio (CFR) to examine the changes in transmissibility and fatality risk of Beta over non-Beta variants. We estimated that Beta variants were 41% (95%CI: 16, 73) more transmissible and 53% (95%CI: 6, 108) more fatal than non-Beta variants. Higher risks of infection and fatality might lead to increasing volumes of infections and critical patients.


Impacts The circulation of SARS-CoV-2 Beta (B.1.351) variants, which were firstly reported in South Africa, challenged the control of COVID-19 pandemic.Using the national-wide COVID-19 cases and SARS-CoV-2 sequences data, Beta variants were estimated 41% more transmissible and 53% more fatal than non-Beta variants in South Africa.Higher risks of infection and fatality might lead to increasing volumes of infections and critical patients.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2/genetics , South Africa/epidemiology
3.
Viruses ; 13(11)2021 11 11.
Article in English | MEDLINE | ID: covidwho-1512701

ABSTRACT

Small animal models are of crucial importance for assessing COVID-19 countermeasures. Common laboratory mice would be well-suited for this purpose but are not susceptible to infection with wild-type SARS-CoV-2. However, the development of mouse-adapted virus strains has revealed key mutations in the SARS-CoV-2 spike protein that increase infectivity, and interestingly, many of these mutations are also present in naturally occurring SARS-CoV-2 variants of concern. This suggests that these variants might have the ability to infect common laboratory mice. Herein we show that the SARS-CoV-2 beta variant attains infectibility to BALB/c mice and causes pulmonary changes within 2-3 days post infection, consistent with results seen in other murine models of COVID-19, at a reasonable virus dose (2 × 105 PFU). The findings suggest that common laboratory mice can serve as the animal model of choice for testing the effectiveness of antiviral drugs and vaccines against SARS-CoV-2.


Subject(s)
COVID-19/virology , Disease Models, Animal , SARS-CoV-2 , Animals , Brain/virology , COVID-19/pathology , Female , Inflammation , Lung/pathology , Lung/virology , Male , Mice, Inbred BALB C , Nose/virology , Pulmonary Alveoli/pathology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL